The science and engineering of microelectronic fabrication
Responsibility Stephen A. Campbell. Edition 2nd ed. Imprint New York : Oxford University Press, 2001. Physical description xiv, 603 p. : ill. ; 25 cm. Series Oxford series in electrical and computer engineering.
Online
Available online
At the library
SAL3 (off-campus storage)
Stacks Request (opens in new tab)
Items in Stacks Call number | Note | Status |
TK7871.85 .C25 2001 | Available |
Science Library (Li and Ma)
Stacks
Items in Stacks Call number | Note | Status |
TK7871.85 .C25 2001 | Unknown |
More options
- Top
- Contributors
- Summary
- Subjects
- Info
- Browse
- Bottom
Description
Creators/Contributors
Author/Creator Campbell, Stephen A., 1954-
Contents/Summary
- PART I: OVERVIEW AND MATERIALS-- 1. An Introduction to Microelectronic Fabrication-- 1.1 Microelectronic Technologies
- A Simple Example-- 1.2 Unit Processes and Technologies-- 1.3 A Roadmap for the Course-- 1.4 Summary-- 2. Semiconductor Substrates-- 2.1 Phase Diagrams and Solid Solubility-- 2.2 Crystallography and Crystal Structure-- 2.3 Crystal Defects-- 2.4 Czochralski Growth-- 2.5 Bridgman Growth of GaAs-- 2.6 Float Zone Growth-- 2.7 Water Preparation and Specifications-- 2.8 Summary and Future Trends-- Problems-- References-- PART II: UNIT PROCESSING I: HOT PROCESSING AND ION IMPLANTATION-- 3. Diffusion-- 3.1 Fick's Diffusion Equation in One Dimension-- 3.2 Atomistic Models of Diffusion-- 3.3 Analytic Solutions of Fick's Law-- 3.4 Corrections to Simple Theory-- 3.5 Diffusion Coefficients for Common Dopants-- 3.6 Analysis of Diffused Profiles-- 3.7 Diffusion in SiO2-- 3.8 Diffusion Systems-- 3.9 SUPREM Simulations of Diffusion Profiles-- 3.10 Summary-- Problems-- References-- 4. Thermal Oxidation-- 4.1 The Deal-Grove Model of Oxidation-- 4.2 The Linear and Parabolic Rate Coeffients-- 4.3 The Initial Oxidation Regime-- 4.4 The Structure of SiO2-- 4.5 Oxide Characterization-- 4.6 The Effects of Dopants During Oxidation and Polysilicon Oxidation-- 4.7 Oxidation Induced Stacking Faults-- 4.8 Alternative Gate Insulations-- 4.9 Oxidation Sytems-- 4.10 SUPREM Oxidations-- 4.11 Summary-- Problems-- References-- 5. Ion Implantation-- 5.1 Idealized Ion Implantation Systems-- 5.2 Coulomb Scattering-- 5.3 Vertical Projected Range-- 5.4 Channeling and Lateral Projected Range-- 5.5 Implantation Damage-- 5.6 Shallow Junction Formation-- 5.7 Buried Dielectrics-- 5.8 Ion Implantation Systems
- Problems and Concerns-- 5.9 Implanted Profiles Using SUPREM+-- 5.10 Summary-- Problems-- References-- 6. Rapid Thermal Processing-- 6.1 Gray Body Radiation, Heat Exchange, and Optical Absorption-- 6.2 High Density Optical Sources and Chamber Design-- 6.3 Temperature Measurement-- 6.4 Temperature Measurement-- 6.4 Thermoplastic Stress-- 6.5 Rapid Thermal Activation of Impurities-- 6.6 Rapid Thermal Processing of Dielectrics-- 6.7 Silicidation and Contact Formation-- 6.8 Alternative Rapid Thermal Processing Systems-- 6.9 Summary-- Problems-- References-- PART III: UNIT PROCESSES 2: PATTERN TRANSFER-- 7. Optical Lithography-- 7.1 Lithography Overview-- 7.2 Diffraction-- 7.3 The Modulation Transfer Function and Optical Exposures-- 7.4 Source Systems and Spatial Coherence-- 7.5 Contact/Proximity Printers-- 7.6 Projection Printers-- 7.7 Advanced Mask Concepts-- 7.8 Surface Reflections and Standing Waves-- 7.9 Alignment-- 7.10 Summary-- Problems-- References-- 8. Photoresists-- 8.1 Photoresist Types-- 8.2 Organic Materials and Polymers-- 8.3 Typical Reactions of DQN Positive Photoresist-- 8.4 Contrast Curves-- 8.5 The Critical Modulation Transfer Function-- 8.6 Applying and Developing Photoresist-- 8.7 Second Order Exposure Effects-- 8.8 Advanced Photoresists and Photoresist Processes-- 8.9 Summary-- Problems-- References-- 9. Nonoptical Lithographic Techniques-- 9.1 Interactions of High Energy Beams with Matter-- 9.2 Direct Write Electron Beam Lithography Systems-- 9.3 Direct Write Electron Beam Lithography Summary and Outlook-- 9.4 X-Ray Sources-- 9.5 Proximity X-Ray Exposure Systems-- 9.6 Membrane Masks-- 9.7 Projection X-Ray Lithography-- 9.8 Projection Electron Beam Lithography (SCALPEL)-- 9.9 E-bean and X-Ray Resists-- 9.10 Radiation Damage in MOS Devices-- 9.11 Summary-- Problems-- References-- PART IV: UNIT PROCESSES 3: THIN FILMS-- 10. Vacuum Science and Plasmas-- 10.1 The Kinetic Theory of Gasses-- 10.2 Gas Flow and Conductance-- 10.3 Pressure Ranges and Vacuum Pumps-- 10.4 Vacuum Seals and Pressure Measurement-- 10.5 The DC Glow Discharge-- 10.6 RF Discharges-- 10.7 High Density Plasmas-- 10.8 Summary-- Problems-- References-- 11. Etching-- 11.1 Wet Etching-- 11.2 Chemical Mechanical Publishing-- 11.3 Basic Regimes of Plasma Etching-- 11.4 High Pressure Plasma Etching-- 11.5 Ion Milling-- 11.6 Reactive Ion Etching-- 11.7 Damage in Reative Ion Etching-- 11.8 High Density Plasma (HDP) Etching-- 11.9 Liftoff-- 11.10 Summary-- Problems-- References-- 12. Physical Deposition: Evaporation and Sputtering-- 12.1 Phase Diagrams: Sublimation and Evaporation-- 12.2 Deposition Rates-- 12.3 Step Coverage-- 12.4 Evaporator Systems: Crucible Heating Techniques-- 12.5 Multicomponent Films-- 12.6 An Introduction to Sputtering-- 12.7 Physics of Sputtering-- 12.8 Deposition Rate: Sputter Yield-- 12.9 High Density Plasma Sputtering-- 12.10 Morphology and Step Coverage-- 12.11 Sputtering Methods-- 12.12 Sputtering of Specific Materials-- 12.13 Stress in Deposited Layers-- 12.14 Summary-- Problems-- References-- 13. Chemcial Vapor Deposition-- 13.1 A Simple CVD System for the Deposition of Silicon-- 13.2 Chemical Equilibrium and the Law of Mass Action-- 13.3 Gas Flow and Boundary Layers-- 13.4 Evaluation of the Simple CVD System-- 13.5 Atmospheric CVD of Dielectrics-- 13.6 Low Pressure CVD of Dielectrics and Semiconductors in Hot Wall Systems-- 13.7 Plasma Enhanced CVD of Dielectrics-- 13.8 Metal CVD +-- 13.9 Summary-- Problems-- References-- 14. Exiptaxial Growth-- 14.1 Water Cleaning and Native Oxide Removal-- 14.2 The Thermodynamics of Vapor Phase Growth-- 14.3 Surface Reactions-- 14.4 Dopant Incorporation-- 14.5 Defects in Epitaxial Growth-- 14.6 Slective Growth-- 14.7 Halide Transport GaAs Vapor Phase Epitaxy-- 14.8 Incommensurate and Strained Layer Heterooepitaxy-- 14.9 Metal Organic Chemical Vapor Deposition (MOCVD)-- 14.10 Advanced Silicon Vapor Phase Epitaxial Growth Techniques-- 14.11 Molecular Beam Epitaxy Technology-- 14.12 BCF Theory-- 14.13 Gas Source MBE and Chemical Beam Epitaxy-- 14.14 Summary-- Problems-- References-- PART V: PROCESS INTEGRATION-- 15. Device Isolation, Contacts, and Metallization-- 15.1 Junction and Oxide Isolation-- 15.2 LOCOAS Methods-- 15.3 Trench Isolation-- 15.4 Silicon on Insulator Isolation Techniques-- 15.5 Semi-insulating Substrates-- 15.6 Schottky Contacts-- 15.7 Implanted Ohmic Contacts-- 15.8 Alloyed Contacts-- 15.9 Multilevel Metallization-- 15.10 Planarization and Advanced Interconnect-- 15.11 Summary-- Problems-- References-- 16. CMOS Techniques-- 16.1 Basic Long Channel Device Behavior-- 16.2 Early MOS Technologies-- 16.3 The Basic 3 um Technology-- 16.4 Device Scaling-- 16.5 Hot Carrier Effects and Drain Engineering-- 16.6 Processing for Robust Oxides-- 16.7 Latchup-- 16.8 Shallow Source/Drains and Tailored Channel Doping-- 16.9 Summary-- Problems-- References-- 17. GaAs Technologies-- 17.1 Basic MESFET Operation-- 17.2 Basic MESFET Technology-- 17.3 Digital Technologies-- 17.4 MMC Technologies-- 17.5 MODFETs-- 17.6 Optoelectronic Devices-- 17.7 Summary-- Problems-- References-- 18. Silicon Bipolar Techniques-- 18.1 Review of Bipolar Devices
- Ideal and Quasi-ideal Behavior-- 18.2 Second Order Effects-- 18.3 Performance of BJTs-- 18.4 Early Bipolar Processes-- 18.5 Advaned Bipolar Processes-- 18.6 Hot Electron Effects in Bipolar Transitions-- 18.7 BiCMOS-- 18.8 Analog Bipolar Technolgies-- 18.9 Summary-- Problems-- References-- 19. MEMS (co-authored with G. Cibuzar, University of Minnesota)-- 19.1 Fundamentals of Mechanics-- 19.2 Stress in Thin Films-- 19.3 Mechanical to Electrical Transduction-- 19.4 Mechanics of Common MEMS Devices-- 19.5 Bulk Micromachining Etching Techniques-- 19.6 Bulk Micromachining Process Flow-- 19.7 Surface Micromachining Basics-- 19.8 Surface Micromachining Process Flow-- 19.9 MEMS Actuators-- 19.10 High Aspect Ratio Microsystems Technology (HARMST)-- 19.11 Summary-- Problems-- References-- 20. Integrated Circuit Manufacturing-- 20.1 Yield Prediction and Yield Tracking-- 20.2 Particle Control-- 20.3 Statistical Process Control-- 20.4 Full Factorial Experiments and ANOVA-- 20.5 Design of Experiments-- 20.6 Computer Integrated Manufacturing-- 20.7 Summary-- Problems-- References-- APPENDICES-- I. Acronyms and Common Symbols-- II. Properties of Selected Semiconductor Materials-- III. Physical Constants-- IV. Conversion Factors-- V. The Complimentary Error Function-- VI. F Values-- VII. SUPREM Commands-- Index.
- (source: Nielsen Book Data)
Subjects